		excretion	secretion	
1	one difference	(metabolic) waste or toxin / harmful or substance is to be removed from body or does not use vesicles	useful product or used in cell communication (e.g. to target tissues) or released from glands (ducts or ductless) or uses vesicles or remain in body	
2	one example of a product	urea / carbon dioxide / water / bile <i>pigment</i> / named example	hormone / enzyme / antibodies / mucus / bile <i>salts</i> / neurotransmitter / named example	
3	one similarity	requires ATP or (involved in) homeostasis or (compounds) produced by cell(s) / produced by metabolism / need to cross membrane / need to move through membrane / need to leave cell / (may be) transported in blood		

One mark per row.

CREDIT converse statements on either side or unmatched statements for each

;

;

;

- *I IGNORE* name or type of product without qualification *DO NOT CREDIT* any ref to egestion in 'excretion'
- 2 IGNORE sweat / urine / bile / saliva / salt / (named) digestive juice
- 3 CREDIT method of leaving cell e.g. exocytosis IGNORE going into cells (as some excretory products do)

[3]

2. (i)

1.

Mark the first answer. *If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then* = 0 *marks*

ultrafiltration;

This term required but ACCEPT phonetic spelling

1

(ii) 17.9;;

Correct answer = 2 marks If answer incorrect, not rounded or incorrectly rounded then allow 1 mark for working 125 ÷ 700 or an unrounded answer e.g. 17.857412

[3]

2

1

1

3.

(i)

Mark the first answer. *If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then* = 0 *marks*

(cuboidal) epithelium / epithelial;

DO NOT CREDIT 'epithelium **cells**' / 'ciliated epithelium' / 'squamous epithelium' / endothelium **ALLOW** columnar epithelium

(ii)

Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = 0 marks

microvilli / microvillus;

ACCEPT 'brush border' DO NOT CREDIT cilia

- (iii) This is a QWC question
 - 1 selective <u>reabsorption;</u>
 - 2 of glucose <u>and</u> amino acids; DO NOT CREDIT if glucose & amino acids & proteins
 - 3 co-transport / facilitated diffusion / uptake described; ACCEPT direct uptake, of glucose / amino acids, by active transport
 - 4 water follows by **osmosis** so concentration of, ions / nitrogenous waste / urea / remaining substances, increases;
 - 5 AVP;

e.g.

- microvilli provide large surface area for uptake
- many mitochondria provide energy for uptake
- many brush border enzymes (ATPase) for active uptake
- active secretion of nitrogenous waste into lumen

3 max

1

1

1

1

QWC - technical terms used appropriately and spelt correctly;

Use of three terms from: reabsorption (or derived term), co-transport (or derived term), facilitated diffusion, osmosis

[6]

- 4. (i) L artery / shunt / vein (at arterial end of shunt) AND
 - M vein;

IGNORE names of artery / vein (e.g. renal) DO NOT CREDIT aorta and vena cava

 (ii) so that clots don't form, while in the (dialysis) machine / during dialysis; *ALLOW congeal instead of clot IGNORE prevents clotting in the body IGNORE clumping*

(iii) idea of allowing blood to clot normally after treatment;
 CREDIT preventing low blood pressure (as low viscosity)

	(iv)	Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then $= 0$ marks		
		(simple) diffusion;		
		<i>IGNORE</i> dialysis <i>DO NOT CREDIT</i> facilitated diffusion	1	
	(v)	<i>idea that</i> it,		
		maintains diffusion gradient /		
		IGNORE unqualified ref to countercurrent		
		maintains concentration gradient /		
		maximises diffusion gradient /		
		maximises concentration gradient /		
		e.g.		
		 solutions in contact over greater distance provides maximum contact for exchange allows exchange over longer distance 		
		allows maximum removal of waste /		
		allows maximum rate of diffusion / AW;		
		IGNORE ref to surface area	1	
			I	[5]
5.	remo	val of, unwanted / toxic / waste, products;	2	
	of m	etabolism;	2	[2]
6.	(i)	award both marks for correct answer		
		evidence of 14.7 - $2.2 = 12.5$ or $14.7 / 2.2$ gains one calculation mark		
		12.5/2.2 × 100;	2	
		= 568.2 / 568 / 570;;	2	
	(ii)	protein converted to amino acids; excess amino acids undergo deamination / removal of amino group; ammonia formed; ammonia converted to urea;		
		AVP; e.g. ref. to <u>ornithine</u> cycle	max 3	
				[5]

PMT

[3]

[3]

7.	the ions crea wat by o	longer the loop of Henle the lower the water potential (of urine); ora s pass out from ascending limb into, medulla / tissue fluid; ating lower water potential in the medulla / AW; ter reabsorbed from collecting duct in medulla; osmosis; (<i>linked to previous marking point</i>)			
	AV	P; e.g. ref to countercurrent m	ultiplier	max 3	
8.	1 2 3 4 5	frequent need to urinate/diura large volume of urine/very di persistent feeling of thirst/exa electrolyte/mineral, imbalanc AVP; e.g. dehydration,	esis; ilute urine; cessive drinking; ce;	3 max	
9. 1 k 2 k 3 t		blood = transport fluid/AW; blood has high (hydrostatic) pressure; tissue fluid created/plasma moves out of capillaries/AW;			
	4	named substance;	glucose/amino acids/fatty acids/glycerol, oxygen, carbon dioxide, urea		
	5 6	from area; moves to;	gut, alveoli, liver cell, liver cell blood/liver cell, blood/liver cell, tissue fluid/alveoli, tissue fluid/kidney		
	7	method;	diffusion/facilitated diffusion/active transport/ endocytosis, diffusion, diffusion, diffusion		
	8	detail of transport in blood;	plasma/dissolved, red blood cells/ haemoglobin, HCO3 ⁻ ions/dissolved/carbamino- haemoglobin, plasma/dissolved		
	9 10	ref. respiration; ref. maintaining diffusion gra			
	 osmoregulation by kidney/AW; pH regulation by kidney/AW; ref. osmosis; 				
	14 15	AVP; e.g. deamination, ornithine cycle, ref. CO ₂ acidic AVP; e.g. ref. glycogen, ref. insulin/glucagon		max 7	
		QWC – legible text with ac	curate spelling, punctuation and grammar;	1	

QWC – legible text with accurate spelling, punctuation and grammar;

[8]

[16]

urks
2 max
5
2
2
2 max
4 max
ter; 4 max

11. CG acts as antigen; move, attached to, free antibodies; attach to, immobilised antibody; coloured particles, form line; ref to complementary shapes; ref to antigen, antibody complex; further detail of antibody structure AVP; e.g. monoclonal CG-antibody complex 4 max [4] 12. conversion of one amino acid to another / AW; (free) amino acids in body may not match body's requirements / AW; can only occur with non-essential amino acids; 2 max [2] 13. removal of, unwanted / toxic / waste, products ; of metabolism ; [2] 14. proteins / polypeptides ; R amino acids A enzymes nucleic acids / DNA / RNA / polynucleotides ; [2] 15. (i) award two marks if correct answer (568.18 / 568.2 / 568 / 570) is given evidence of 14.7 - 2.2 = 12.5 or 14.7/2.2 gains one calculation mark $12.5/2.2 \times 100 = 568.18 / 568.2 / 568 / 570;;$ 2 (ii) (more) proteins to amino acids; ref to deamination / removal of amino group; (more) ammonia formed ; ref to ornithine cycle; (more) ammonia converted to urea; 2 max [4] 16. ammonia is, alkaline / highly toxic / ora ; ammonia is more soluble / ora ; large volumes of water to excrete it ; would cause dehydration; 2 max

PMT

[2]

17.	1 2 3 4 5 6 7 8	both filtered / AW ; both small molecules / AW ; A RMM close to 69 000 (all filtered) glucose reabsorbed ; active uptake, carrier / cotransporter, proteins ; (some) glucose used in, respiration / active processes, in kidney ; some urea reabsorbed ; by diffusion ; ref to reabsorption in PCT ; <i>apply once to either glucose or urea</i>	5 max	[5]
18.	ADH reduc incre ABA auxin	I / anti diuretic hormone ; ces blood sugar levels / correct mechanism to achieve this ; eases blood sugar levels / correct mechanism to achieve this ; A / abscisic acid ; n / IAA ;		[5]
19.	A - s B - (C - (D - (sinusoid ; (branch of) bile duct ; (branch of hepatic) portal vein / HPV ; (branch of) hepatic artery ;		[4]
20.	bile _l (pigr AVP	pigments build up in blood ; nents) do not enter gut / AW ; 9 ; e.g. bile, canaliculi / duct, blocked / gall stones	2 max	[2]
21.	(i) (ii) (iii)	 directly proportional / AW; 2.6; 1 high levels of glucose in glomerular filtrate; 2 unable to reabsorb <u>all</u> glucose (in, PCT / kidney tubule); A no more glucose can be reabsorbed 3 ref to glucose carriers / AW; 4 at threshold value carriers, all saturated / limiting factor; 5 AVP; e.g. ref to renal threshold 	1 1 3 max	
			J IIIUA	[5]

22.	(i)	long loop of Henlé or/ deep / wide, medulla ; very low water potential in medulla / AW ; A higher concentration of salta collecting duct more permeable to water ; large number of, water permeable channels / aquaporins, in collecting duct more sensitive to ADH / more ADH produced ; AVP ; e.g. other correct ref to kidney histology all loops of Henlé are long CD more permeable to urea more capillary loops in medulla			3 max
	(ii)	 seeds contain, storage molecules / AW; A named example of storage molecule aerobic; respiration; water is produced; <i>linked to respiration</i> R reference to condensation reactions 		example of storage	
		accur metal	rate equation for aerobic respiration can gain bolic water = 2 marks	n 3 marks	3 max [6]
23.	(a)	(i) (ii)	noradrenaline / adrenaline / thyroxine / grow / glucocorticosteroid; R steroid insoluble; unreactive / stable / inert; cannot diffuse out of cell / AW; no effect on water potential; compact / branched; lots of glucose in small space / AW; small space easy to, convert to glucose / hydrolyse; lots of 'ends' for enzyme action;	wth hormone R lots of energy in	1 max 3
	(b)	1 2 3 4 5 6 7 8 9 10	increases activity of glycogen synthetase; slow initial effect / AW; ref to figures to show an increase; (overall effect) increases, production of glyd / glycogenesis; glycogen lowers activity of glycogen phosphorylase; rapid effect; ref to figures to show a decrease; prevents / reduces, breakdown of glycogen (glucose binds to) allosteric site / AW; (glucose acts as) inhibitor / activator;	cogen R storage of / glycogenolysis; R competitive inhibitor	max 5

(c) *either*

deamination of amino acids / removal of NH₂ from amino acids; pyruvate / carbon skeleton / AW; triose phosphate / TP; condensation / increasing number of carbon atoms; *or* breakdown of, lipid / triglyceride; glycerol; triose phosphate / TP; condensation / increasing number of carbon atoms; max 3

[12]